Non-Linear Response of Torsional Buckling Piezoelectric Cylindrical Shell Reinforced with DWBNNTs Under Combination of Electro-Thermo-Mechanical Loadings in Elastic Foundation
Authors
Abstract:
Nanocomposites provide new properties and exploit unique synergism between materials. Polyvinylidene fluoride (PVDF) is an ideal piezoelectric matrix applicable in nanocomposites in a broad range of industries from oil and gas to electronics and automotive. And boron nitride nanotubes (BNNTs) show high mechanical, electrical and chemical properties. In this paper, the critical torsional load of a composite tube made of PVDF reinforced with double-walled BNNTs is investigated, under a combination of electro-thermo-mechanical loading. First, a nanocomposite smart tube is modeled as an isotropic cylindrical shell in an elastic foundation. Next, employing the classical shell theory, strain-displacement equations are derived so loads and moments are obtained. Then, the total energy equation is determined, consisting of strain energy of shell, energy due to external work, and energy due to elastic foundation. Additionally, equilibrium equations are derived in cylindrical coordinates as triply orthogonal, utilizing Euler equations; subsequently, stability equations are developed through the equivalent method in adjacent points. The developed equations are solved using the wave technique to achieve critical torsional torque. Results indicated that critical torsional buckling load occurred in axial half-wave number m = 24 and circumferential wave number n = 1, for the investigated cylindrical shell. The results also showed that with the increase in the length-to-radius ratio and in the radius-to-shell thickness ratio, the critical torsional buckling load increased and decreased, respectively. Lastly, results are compared in various states through a numerical method. Moreover, stability equations are validated via comparison with the shell and sheet equations in the literature.
similar resources
Buckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-ba...
full textEffects of Electro-Thermal Fields on Buckling of a Piezoelectric Polymeric Shell Reinforced with DWBNNTs
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo- mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to ...
full texteffects of electro-thermal fields on buckling of a piezoelectric polymeric shell reinforced with dwbnnts
using principle of minimum total potential energy approach in conjunction with rayleigh-ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (dwbnnt) is investigated. coupling between electrical and mechanical fields are considered according to a re...
full textElectro-Mechanical Buckling of a Piezoelectric Annular Plate Reinforced with BNNTs Under Thermal Environment
In this article, axisymmetric buckling behavior of piezoelectric fiber reinforced polymeric composite (PFRPC) annular plate subjected to electro-thermo-mechanical field is presented utilizing principle of minimum potential energy. Boron-nitride nanotubes (BNNTs) are used as fibers. Full coupling between electrical, mechanical and thermal fields are considered according to a representative volum...
full textElectro-Thermo-Mechanical Response of Thick-Walled Piezoelectric Cylinder Reinforced by BNNTs
Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) subjected to electro-thermo-mechanical fields is presented in this article. The electro-thermo-elastic properties of piezoelectric fiber reinforced composite (PEFRC) was studied by a modified XY micromechanical model capable of exhibiting full coupling relati...
full textAn Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation
This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. ...
full textMy Resources
Journal title
volume 12 issue 3
pages 505- 520
publication date 2020-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023